

"Life Cycle Cost Examination of Bituminous Asphalts and Substantial Asphalts in Metropolitan Regions"

Nikhil Ramesh Fendar¹ and Dr. B. S. Shete²

¹PG Student, DepartmentofCivilEngineering,Dr. Rajendra Gode Institute of Technology and Research, Amravati.

² DepartmentofCivilEngineering, Dr. Rajendra Gode Institute of Technology and Research, Amravati.

Date of Submission: 15-09-2022

ABSTRACT: Road building requires substantial investments that go towards repair and construction of infrastructure. For developing countries, like India, it can be difficult to save money for new infrastructural projects. The emphasis is turning toward the construction of long-term performing pavement that are built to withstand increased loads, traffic intensity, or high tire pressure. This study examines the benefits of using a different material. concrete pavements, to replace bituminous ones. Concrete pavements provide economic and environmental benefits, as well as improving traffic safety, due to its higher visibility.

Keywords:Bituminous pavement, Concrete pavement, Life Cycle Analysis.

I. INTRODUCTION

India has been struggling with expenses for new road projects. They also lack the necessary funds for maintenance and repairs of roads, which often become unusable. Today, we are more focused on the construction of long lasting pavements. Most of our roads are made from bituminous paving material. Bituminous pavement shows early signs of stiffness due to increasing loads, intensity of traffic, high tyre pressure, etc. Common forms of distresses in bituminous paving Date of Acceptance: 24-09-2022

_____ materials is rutting, cracking, aging etc. These distresses get more severe in hot climates like India as it is highly sensitive to temperature. A concrete road is better than an asphalt one because it is heavier, more resistant to cracks and lasts a long time. White topping consists of applying a cement mixture over an asphalt one to lengthen the lifespan of the asphalt (and increase readability as well). Pavement's life-cycle cost depends on your initial investment and the amount of maintenance or rehabilitation you need. Different types of pavements will require slightly different amounts, depending on their various benefits. For example, if your pavement is economically beneficial, you may want to choose bituminous or concrete at a variety of prices with low-long term investments.[1]

II. OBJECTIVES OF STUDY

- 1. The main objective is to calculate the total cost of pavement by using Life-Cycle Lost analysis. This will assist in selecting an appropriate pavement system.
- 2. Flexible and Rigid Pavements: Which is the Cheaper Option.
- 3. Alternative for the Maintaining and Rehabilitation Needed in Bituminous Pavements.

III. METHODOLOGY LIFE CYCLE COST ANALYSIS PROCEDURE[2]

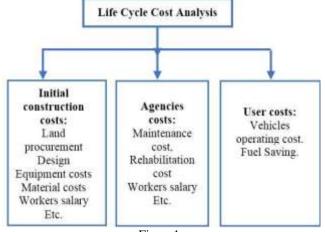


Figure1.

The steps involved in the LCCA methodology are as follows:

- 1. Estimatetheinitialconstruction cost.
- 2. Estimatemaintenancecost.
- 3. Estimateroadusercosts
- 4. Determinelife-cyclecost.

An investigation on the cost of pavements found that when life cycle cost analysis was done through net present value formula, IRC SP-30 was used.

Agency costs are calculated from the district scheduleofrates of Public Works Department (PWD) Puneregion.

The procedures of construction and estimates werestudied from cases tudies

doneonthreedifferentroads.

- 1) Construction of pavements UTWT and TWT, MadhubanareaatoldSanghviwardno59, PCMC.
- 2) Construction of PQC pavementroad from Chaphe karchowktobridge on Pavana Rivertowards Therg aon. PCMC
- 3) Developmentof45.00WwideroadfromPuneAla ndiroadtoDabhadewastiinPCMCarea.

IV. LIFECYCLECOSTANALYSIS

This story is written in 2020, so we're going to talk about the future. 20 years from now, things will be more inflationary and more expensive, so they'll need to take that into account when they do this research.

1. LifeCycleCostofBituminousPavements

1) Construction costofbituminouspavements.

		ost orbit	inniousi	Table 1. Construction Cost of Dituminous avenuents					
PavementCrust		Length(Thickne	Width	Rate(Rs)				
	Cost/km	m)	SS	(m)					
			(mm)						
Bituminous					8182.00				
Concrete	3,272,800	1000	40	10	/Cum				
DenseBitumin									
ous					7115.0				
Macadam	7,115,000	1000	100	10	/Cum				
WetMix					1150.00				
Macadam	2,875,000	1000	250	10	/Cum				
GranularSub-					1270.00				
Base	3,175,000	1000	250	10	/Cum				
			1		21.00				
PrimeCoat	210,000	1000	Coats	10	/Sqm.				
			2		17.50				
TackCoat	350,000	1000	Coats	10	/Sqm.				
InitialCost	16,997,800				_				

Table1.ConstructionCost ofBituminousPavements

2. Maintenancecostofbituminouspavement

Overlay shall be provided at every 10th year afterconstruction for strengthening of existing pavement having a75mm DBM layer and 40mm BC layer. Overlay cost is showninTableII. According to MoRTH guidelines a layerof 25mmBC is to be providedonce in5 years. Cost of overlaysisshowninTableIII.

Table2.PeriodicResurfacingineveryFiveYears(BC25mm)

Pavement Layer	Cost/k m	Length (m)	Thick(m m)	Width (m)	Rate (Rs)
Bituminous	2,045,5	1000	25	10	8182.0/
Concrete	00				Cum

Year	Costper Km.	InflatedCost@5.50%p.a.
5 th Year	2,045,500	2,820,422.96
14 th Year	2,045,500	4,566,530.66
18 th Year	2,045,500	5,657,130.76
Total	6,136,500	13,044,084

Table3.CostofOverlaytobeprovided atevery10th year

OverlayLaye r	Cost/km	Lengt h (m)	Thick(mm)	Width (m)	Rate (Rs)
Bituminous Concrete	3,272,80 0	1000	40	10	8182.0 /Cum
Dense Bitumino usMacad	5,336,25	1000	75	10	7115.0 /Cum

DOI: 10.35629/5252-040911321143 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1134

International Journal of Advances in Engineering and Management (IJAEM) Volume 4, Issue 9 Sep. 2022, pp: 1132-1143 www.ijaem.net ISSN: 2395-5252

am	0				
TackCoat		1000	2	10	17.50

OverlayYear	InitialCost(Rs)	InflatedCost@5.50%p.a.
10thYear	8,959,050	16,145,035.95
Total	8,959,050	16,145,036

2) Life Cycle Cost of Concrete PavementConstructioncostofconcretepavements. Table4.ConstructionCostofConcretePavements

Pavement	Cost/k	Length	Thick(Width	Rate
Layer	m	(m)	mm)	(m)	(Rs)
	1,72,23,				5741.0/
PQC	000	1000	300	10	Cum
DLC	25,96,0				2596.0/
Layer	00	1000	100	10	Cum
	31,75,0				1270.0/
GSB Layer	00	1000	250	10	Sqm.
	2,29,94,				
Initial Cost	000				

MaintenancecostofConcretePavements

JointSealing:50% of the jointseal ant sare to be replaced i nevery 5 year:

Joint Length: ContractionJoint lengthperkm. for10m widecarriageway10000m

LongitudinalJointlengthfor1kmandtwojointsin10m width10000m

Length to be replaced every 5 years is 30% of total

lengthContractionjoint=3333.333m

Longitudinaljoint=3333.333m

Costofjointsealsin showninTableV

	MaintenanceCostofJointsSealing				
Maintenance Year	MaintenanceC ost(Rs.)	Inflated Cost@5.5 0%p.a.			
5thYear	833,333	1,149,035. 67			
10thYea r	833,333	1,501,743. 67			
15thYea r	833,333	1,962,718. 92			
20thYea r	833,333	2,565,195. 13			
Total	3,333,3 33	7,178,693			

Table5. CostofJointSeals(Preformed Seals)perKm

Concretespalling: -

	350,000	Coats	/Sqm.
Initial Coat	° 050 050		
InitialCost	8,959,050		

0.5% of Jointlength for a width of 500 mmin every 10 years 10 thyears palling concrete=50 Sqm Repairs of concretes palling=50*6889.2=Rs 344460

Table 6. Total Cost and Inflated Cost of Concrete Spalling

CONCRETE SPALLING				
Maintenance Year Maintenance Inflated Cost Cost (Rs.) @5.50% p.a.				
10 th Year	344,460	620,748.75		
Total	344,460	620,749		

3) LifeCycleCost ofOverlays Lifecyclecostof bituminousoverlays BituminousOverlays

Table7.LCCofBituminousOverla	ys
------------------------------	----

Bituminous Overlays				
Overlay	Initial Cost	Inflated cost		
Strengthening overlay	8,959,050	16,145,036		
Periodic overlays	6,136,500	13,044,084		
Total	15,095,550	29,189,120		

LifecyclecostofConcreteoverlays 3.

2) ConstructioncostofThinWhitetoppingoverlay

Table8.ThinWhitetoppingoverlay												
Pavement	Cost/km	Length	Thick	Width	Rate							
Layer		(m)	(mm)	(m)	(Rs)							
ThinWhite												
Topping(TWT					5741.0							
)	8,6,11,500	1000	150	10	/Cum							
					53.6/C							
Milling	26,775	1000	50	10	um							
InitialCost	8,638,300											

<u>.</u>				
-			Rate	
Item	Unit	Quantity	(Rs.)	Cost /Km.
		3333.333		
Contraction Joint	m	m	150	500000
Longitudinal		3333.333		333333.33
Joint	m	m	100	3
				833333.33
			Total	3

3) ConstructioncostofUltra-ThinWhitetoppingoverlay

PavementLa yer	Cost/km	U	Thick(m m)		Rate(Rs)
Ultra- ThinWhiteTo pping (UTWT)		1000	100	10	5741.0/C um
Milling	26,775	1000	50	10	53.6/Cum
InitialCost	5,767,800				

Table8.Ultra-ThinWhitetoppingOverlay

4) Maintenance cost for concrete overlays will be same as that of new concrete roads.

Table9.MaintenancecostofConcretePavements

Stages	Initialcost	Inflatedcost
Jointsealing	3,333,333	7,178,693
Concretespalling	344,460	620,749
Total	3,677,793	7,799,442

RoadUserCost.

1. VehicleOperatingCost(VOC): -

User cost are those that borne by the vehicles thattravel on the road. These cost comprise of Vehicle OperatingCost(VOC), timecosts of passenger and com modities intransit and accident cost. In the Present analysis, only VOC isconsidered, assuming the other two costs are equal in bothtypes of pavements. VOC consists of wear and tear of vehicle, fuel, lubricants, depreciation and fixed cost. Ith asbeenobserved that a well-constructed bituminous concrete surfacehas a smooth riding quality with a roughness index around2000 mm/km but the riding quality deteriorate with traffic andmay reach value of roughness of 4000 mm/km in a few yearsand renewal wearing course is given t the stage to improvethe

DOI: 10.35629/5252-040911321143 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1137

ridingquality.Ontheotherhand,initialroughnessofce ment concrete surface is maintained almost throughout itslife with very little deterioration, for comparison of life cyclecost, roughness of bituminous surface is taken as 3000 mm/kmandforconcretesurface2000mm/km.

isfoundfromIRCSP:30Manualofeconomicevaluatio n for transportation projects. Annual growth in traffic7.5% and inflation rate of 7.5% is considered.

VOC is calculatedas VOCperyear=(No.of vehicleperday) *(365)*(VOCRs /km)

CalculationofVOCisshowninTableXI Traffic volume survey was conducted manually forthreedays, twelvehours daily andnumberofcommercialvehicles perdaywereconsidered.

SiteName	Chap	hekarCl	nowk	Dabh	Dabhadewasti, Charholi				
				Char					
	CVPI)		CVP	D				
Day	D1	D2	D3	D1	D2	D3			
Time(9amto 9pm)									
9.00- 10.00	58	61	58	58	59	63			
10.00-11.00	61	58	58	59	64	61			
11.00-12.00	48	51	55	69	67	64			
12.00-01.00	53	55	52	57	61	59			
01.00-02.00	49	47	52	52	48	47			
02.00-03.00	55	51	47	45	53	43			
03.00-04.00	48	50	49	58	56	55			
04.00-05.00	50	48	53	54	51	59			
05.00-06.00	55	53	55	61	59	66			
06.00-07.00	57	61	60	53	66	61			
07.00-08.00	62	58	56	58	61	60			
08.00-09.00	63	60	65	68	67	66			
Total	659	653	660	692	712	704			
Average	657.3	3		702.6	702.67				
	657			703	703				

Table10 TrafficVolumeCount

2. FuelSaving

In USA, a study was made and it was observed thatthere is fuel saving of 20% on concrete road compared as tobituminousroadshavingsameroughnessindex.

In India, central road research institute (CRRI), NewDelhialsomadesimilarstudyonDelhi-Agra(NH-2)andfound that there is a fuel saving of 14% on concrete roads ascompared to bituminous roads forcommercial vehicles. Dueto increase intraffic onroads and rising inthe fuel prices inthe international market, the impact of fuel saving has beenfoundquite

importantascomparedtoextrainitialcostofconcretero adoverbituminousroad.

A case study on Durable and cost effective concreteoverlay oncity bituminous roads: White

topping by BinodKumar, Scientist, CRRI also states that there is 10% 15% fuelsaving for heavy vehicles on concrete roads. Annualfuelsaving(Rs)=No.ofCVPD*365*14/100*1 /4

*58

14/100=14% fuelsaving, 1/4=(4kmperlitre), Inflation rate

-5% indiesel cost

CalculationofFuelsavingisshownin tableXII

V. RESULTS AND DISCUSSION

Lifecyclecostcomparisonofnewbituminousandconcr etepavementsisshowninTableXIII LifeCycleCostComparisonofNewBituminousPave mentsXIV

VI. CONCLUSION

1) Life cycle cost analysis shows that even if the initial costof concrete pavements is high the net present value ofconcrete pavements is Rs 193 lakhs/km (5%) less thanbituminous pavements.

2) Life cycle cost analysis of overlays shows that the netpresentvalueofultrathinwhitetoppingisRs283lakhs/km (7%) less and of thin white topping is Rs 254lakhs/km(6%)lessthanthecostofbituminousoverl ays.

3) When the net present value of bituminous overlays

andconcretewhitetoppingswithoutconsideringvehicl eoperating cost and fuel saving the total cost of bituminousoverlaysisRs172lakhsandthatofconcrete whitetoppings is Rs 107 lakhs for thin white topping and Rs 78lakhs for ultra-thin white topping, which is 38% and 55% lesserthanbituminous overlays.

4) LCCAconcludesthatconcretepavementsare morebeneficialthanbituminouspavementsandconcre teoverlayscanbeconsideredasbeneficialoptionforreh abilitationofexistingbituminouspavements.

REFERENCES

- Bageshwar Prasad "Life Cycle Cost Analysis of CementConcreteRoadsVSBituminousRoads "(IndianRoadCongress (IRC)TechnicalPapers2007)
- [2] Patel Karan M., Dr. L.B.Zala, Prof. A.A.Amin "Life cyclecostanalysisforselectingpavementmaint enancealternatives, A case study of Kota-Baran road (NH-27)"InternationaljournalofAdvanceResearchi nEngineering,Science&TechnologyVolume3 ,Issue7,July-2016
- [3] Preethi.S, Radhakrishna, Raghavendra Prasad "Life cyclecost analysis of Overlay for an Urban road in Bangalore"InternationaljournalofResearchin

EngineeringandTechnologyeISSN:2319-1163|pISSN:2321-7308

[4] Mr.AkhaiMudassarMohammedShafi,Mr.Ah medAfaque Shakeel, Prof. Siddesh Kashinath Pai "Life CycleCost Analysis of Road Pavements in Rural Ares" IJSTMInternationalJournalofScienceTechnol ogyand

Management.Vol.No.5,IssueNo.08,August2 016

- [5] Purvesh Raval, Darsh Belani, P. Jayeshkumar Pitroda "Aliterature review on UTW pavements in IndianContext"(JournalofInternationalAcade micResearchforMultidisciplinaryImpactFact or1.393,Volume1,Issue9,October2013
- [6] VinayHN,SunilS"RehabilitationofLowVolu meFlexible Pavements by White Topping – A Case Study"(IJRET: International Journal of Research in EngineeringandTechnology
- [7] D.R.Jundhare,K.C.KhareR.K.Jain"Ultra-ThinWhitetopping in India: State-of-Practice" ACEE Int. J. onTransportationandUrbanDevelopment,Vol .2,No.1,April 2012
- [8] Ankush Kumar Sehgal and S.N. Sachdeva "A review ofusingthinwhitetoppingoverlaysforrehabilit ationofasphaltpavements"(JournalofBasican dAppliedEngineering Research) Volume 2,Number3;January-March,2015,pp. 182-187.
- [9] D.R.Jundhare,K.C.KhareR.K.Jain"Ultra-ThinWhitetopping in India: State-of-Practice" ACEE Int. J. onTransportationandUrbanDevelopment,Vol .2,No.1,April 2012
- [10] MiteshD.Patel,Prof.P.S.Ramanuj,BhavinPar mar,AkashParmar"WhiteToppingasaRehabil itationMethod:ACaseStudyofBudhel-GhoghaRoad"International Journal of Advanced Engineering ResearchandStudies.

						V	00								
		Vehicle Op	erating Cost f	or Conc	rete Pavements		Vehicle Operating Cost for Bituminous Pavements								
Sr No	Year	CVPD Traffic Growth @ 7.5%	VOC (IRC SP 30 for Roughness) 2000	Days	VOC	VOC (in Lakhs)	Sr No	Year	CVPD Traffic Growth @ 7.5%	VOC (IRC SP 30 for Roughness) 3000	Days	VOC	VOC (in Lakhs)		
1	2016	0	57.95	365	0	0	1	2016	0	59.26	365	0	0		
2	2017	700	62.30	365	15917384.39	159.174	2	2017	700	63.71	365	16277506.21	162.775		
3	2018	753	66.97	365	18394527.34	183.945	3	2018	753	68.49	365	18810693.12	188.107		
4	2019	809	71.99	365	21257175.66	212.572	4	2019	809	73.62	365	21738107.23	217.381		
5	2020	870	77.39	365	24565323.62	245.653	5	2020	870	79.14	365	25121100.17	251.211		
б	2021	935	83.20	365	28388302.1	283.883	б	2021	935	85.08	365	29030571.38	290.306		
7	2022	1005	89.44	365	32806231.62	328.062	7	2022	1005	91.46	365	33548454.05	335.485		
8	2023	1080	96.15	365	37911701.42	379.117	8	2023	1080	98.32	365	38769432.22	387.694		
9	2024	1161	103.36	365	43811709.95	438.117	9	2024	1161	105.70	365	44802925.11	448.029		
10	2025	1248	111.11	365	50629907.31	506.299	10	2025	1248	113.62	365	51775380.33	517.754		
11	2026	1342	119.44	365	58509186.63	585.092	11	2026	1342	122.14	365	59832923.89	598.329		
12	2027	1443	128.40	365	67614678.8	676.147	12	2027	1443	131.31	365	69144422.67	691.444		
13	2028	1551	138.03	365	78137213.19	781.372	13	2028	1551	141.15	365	79905023.45	799.050		
14	2029	1667	148.38	365	90297317	902.973	14	2029	1667	151.74	365	92340242.72	923.402		
15	2030	1792	159.51	365	104349837	1043.498	15	2030	1792	163.12	365	106710693	1067.107		
16	2031	1927	171.47	365	120589280.3	1205.893	16	2031	1927	175.35	365	123317544.6	1233.175		
17	2032	2071	184.33	365	139355987.1	1393.560	17	2032	2071	188.51	365	142508837.5	1425.088		
18	2033	2227	198.16	365	161043262.6	1610.433	18	2033	2227	202.64	365	164686775.3	1646.868		
19	2034	2394	213.02	365	186105620.3	1861.056	19	2034	2394	217.84	365	190316154.7	1903.162		
20	2035	2573	229.00	365	215068307.5	2150.683	20	2035	2573	234.18	365	219934106.3	2199.341		
21	2036	2766	246.17	365	248538312.8	2485.383	21	2036	2766	251.74	365	254161351.6	2541.614		

Table 11. Vehicle Operating Cost

				FUEL SAVIN	3		
Year	CVPD	Days	Fuel Saving @ 14%	Mileage (1/4)	Diesel Cost Inflation @ 5%	Extra Fuel Cost	Extra Fuel Cost in Lakhs
2016	0	0	0	0	0	0	0
2017	703	365	0.14	0.25	58	520887.85	5.21
2018	756	365	0.14	0.25	61	587952.1607	5.88
2019	812	365	0.14	0.25	64	663651.0014	6.64
2020	873	365	0.14	0.25	67	749096.0678	7.49
2021	939	365	0.14	0.25	70	845542.1865	8.46
2022	1009	365	0.14	0.25	74	954405.743	9.54
2023	1085	365	0.14	0.25	78	1077285.482	10.77
2024	1166	365	0.14	0.25	82	1215985.988	12.16
2025	1254	365	0.14	0.25	86	1372544.184	13.73
2026	1348	365	0.14	0.25	90	1549259.248	15.49
2027	1449	365	0.14	0.25	94	1748726.376	17.49
2028	1558	365	0.14	0.25	99	1973874.897	19.74
2029	1674	365	0.14	0.25	104	2228011.29	22.28
2030	1800	365	0.14	0.25	109	2514867.744	25.15
2031	1935	365	0.14	0.25	115	2838656.966	28.39
2032	2080	365	0.14	0.25	121	3204134.05	32.04
2033	2236	365	0.14	0.25	127	3616666.309	36.17
2034	2404	365	0.14	0.25	133	4082312.096	40.82
2035	2584	365	0.14	0.25	140	4607909.779	46.08
2036	2778	365	0.14	0.25	147	5201178.163	52.01

Table12.FuelSaving

			LIFE CYC	LE COST	T ANAL	VSIS					LIFE	CYCLE	COST	NALYS	15		
			Bitum	inous Pa	vementa				Concrete Pavementa								
							Cost 🗞	Lakha	Cost &/Lakh								
SrN e	Yea F	Constr uction & Mainte nance cost	voc	Extr 3 Fuel Cost	Tota 1 Cost	(1/1.1 2)*n	NPV Constru ction & Mainte nance	NPV Tota I	8r N a	Yea F	Const ructio n & Main tenan cc cost	voc	Tota 1 Cost	(1/1.1 2)^n	NPV Constru ction & Mainte nance	NP V Tata 1	
1	2016	169.97	0.00	0	169. 98	1.00	169.98	169. 98	1	2016	229.9 4	0.00	229. 94	1.00	229.94	229. 94	
2	2017		162.78	5.21	167. 98	0.89	0.00	149. 99	2	2017	0.00	159.17	150. 17	0.89	0.00	142.	
3	2018		188.11	5.88	193. 99	0.80	0.00	154. 64	3	2018	0.00	183.95	183. 95	0.80	0.00	146.	
4	2019		217.38	6.64	224. 02	0.71	0.00	159. 45	4	2019	0.00	212.57	212. 57	0.71	0.00	151. 30	
5	2020		251.21	7.49	258. 70	0.64	0.00	164. 41	5	2020	0.00	245.65	245. 65	0.64	0.00	156.	
6	2021	28.20	290.31	8.46	326. 97	0.57	16.00	185. 53	6	2021	11.49	283.88	295. 37	0.57	6.52	167.	
7	2022		335.48	9.54	345. 03	0.51	0.00	174. 80	7	2022	0.00	328.06	328. 06	0.51	0.00	166. 21	
8	2023		387.69	10.77	398. 47	0.45	0.00	180. 25	8	2023	0.00	379.12	379.	0.45	0.00	171. 40	
9	2024		448.03	12.16	460. 19	0.40	0.00	185. 86	9	2024	0.00	438.12	438. 12	0.40	0.00	176. 95	
1	2025		\$17.75	13.73	531. 48	0.36	0.00	191. 66	10	2025	0.00	506.30	506. 30	0.36	0.00	182. 58	
0	2026	161.45	\$98.33	15.40	775. 27	0.32	51.98	249. 62	11	2026	21.22	585.09	606. 32	0.32	6.83	195.	
1 2 1	2027		691.44	17.49	708. 93	0.29	0.00	203. 80	12	2027	0.00	676.15	676. 15	0.29	0.00	194. 38	
1 3	2028		799.05	19.74	818. 79	0.26	0.00	210. 16	13	2028	0.00	781.37	781. 37	0.26	0.00	200. 56	
1 4	2029		923.40	22.28	945. 68	0.23	0.00	216. 73	14	2029	0.00	902.97	902. 97	0.23	0.00	206. 94	
1	2030	45.67	1067.11	25.15	1137 .92	0.20	9.34	232. 84	15	2030	0.00	1043.5 0	1043	0.20	0.00	213. 52	
5	2031		1233.18	28.39	1261 .56	0.18	0.00	230. 48	16	2031	19.63	1205.8	1225 .52	0.18	3.59	223. 90	
1 7	2032		1425.09	32.04	1457	0.16	0.00	237. 69	17	2032	0.00	1393.5	1393 .56	0.16	0.00	227. 32	
	2033		1646.87	36.17	1683	0.15	0.00	245. 12	18	2033	0.00	1610.4 3	1610 .43	0.15	0.00	234. 55	
1	2034	56.57	1903.16	40.82	2000 .56	0.13	7.36	260. 15	19	2034	0.00	1861.0	1861	0.13	0.00	242. 01	
2	2035		2199.34	46.08	2245 .42	0.12	0.00	260. 71	20	2035	0.00	2150.6 B	2150 .68	0.12	0.00	249. 71	
2 1	2036		2541.61	52.01	2593 .63	0.10	0.00	268. 87	21	2036	25.65	2485.3 B	2511 .04	0.10	2.66	260. 31	
			Total NP1	v			254.67	4332 .74			Ter	al NPV			249.54	4139 .36	

Table 13. Life Cycle Cost Comparison of Bituminous and Concrete Pavements

							Ne	t Pres	ent Value o	f OVER	LAYS							
		NPV	Bitumino	ous Over	rlays				Concrete C Topping 1					NPV Concrete Overlays (Thin White Topping Thickness - 150mm)				
S r N o	Year	Con stru ctio n & Mai nten anc e	voc	Ext ra Fuel Cos t	(1/1.1 2)^n	NPV	S r N o	Ye ar	Constr uction & Mainte nance cost	vo c	(1/1.1 2)^n	NP V	S r N o	Ye ar	Constr uction & Mainte nance cost	vo c	(1/1.1 2)^n	NPV
1	2016	89.5 905	0.000	0	1.00	89.590 5	1	20 16	57.678	0.00	1.00	57. 678	1	20 16	86.383	0.00	1.00	86.38 3
2	2017		162.7 75	5.21	0.89	149.98 5661	2	20 17		159. 174	0.89	142	2	20 17		159. 174	0.89	142.1 19504
3	2018		188.1 07	5.88	0.80	154.64 4812	3	20 18		183. 945	0.80	146	3	20 18		183. 945	0.80	146.6 40046
4	2019		217.3 81	6.64	0.71	159.45 129	4	20 19		212. 572	0.71	151 .3	4	20 19		212. 572	0.71	151.3 04378
5	2020		251.2 11	7.49	0.64	164.40 9774	5	20 20		245. 653	0.64	156 .12	5	20 20		245. 653	0.64	156.1 17073
б	2021	28.2 0	290.3 06	8.46	0.57	185.52 8929	6	20 21	11.49	283. 883	0.57	167 .6	6	20 21	11.49	283. 883	0.57	167.6 02787
7	2022		335.4 85	9.54	0.51	174.80 2225	7	20 22		328. 062	0.51	166 .21	7	20 22		328. 062	0.51	166.2 06579
8	2023		387.6 94	10.7	0.45	180.24 6315	8	20 23		379. 117	0.45	171 .49	8	20 23		379. 117	0.45	171.4 93284
9	2024		448.0 29	12.1	0.40	185.86 2664	9	20 24		438. 117	0.40	176 .95	9	20 24		438. 117	0.40	176.9 48148
1 0	2025		517.7 54	13.7 3	0.36	191.65 6744	1 0	20 25		506. 299	0.36	182 .58	1	20 25		506. 299	0.36	182.5 76521
1 1	2026	161. 45	598.3 29	15.4 9	0.32	249.61 6897	1 1	20 26	21.22	585. 092	0.32	195 .22	1 1	20 26	21.22	585. 092	0.32	195.2 17779
1 2	2027		691.4 44	17.4 9	0.29	203.80 0863	1 2	20 27		676. 147	0.29	194 .38	1	20 27		676. 147	0.29	194.3 76044
1 3	2028		799.0 50	19.7 4	0.26	210.16 2738	1 3	20 28		781. 372	0.26	200 .56	1	20 28		781. 372	0.26	200.5 58765
1 4	2029		923.4 02	22.2 8	0.23	216.72 603	1 4	20 29		902. 973	0.23	206 .94	1	20 29		902. 973	0.23	206.9 38145
1 5	2030		1067. 107	25.1 5	0.20	223.49 7138	15	20 30		1043 .498	0.20	213 .52	1	20 30		1043 .498	0.20	213.5 20441
1 6	2031	45.6 7	1233. 175	28.3 9	0.18	238.82 5544	1 6	20 31	19.63	1205 .893	0.18	223 .9	1 6	20 31	19.63	1205 .893	0.18	223.8 97921
1 7	2032		1425. 088	32.0 4	0.16	237.68 9421	1 7	20 32		1393 .560	0.16	227 .32	$\frac{1}{7}$	20 32		1393 .560	0.16	227.3 19802
1 8	2033		1646. 868	36.1 7	0.15	245.12 4438	1 8	20 33		1610 .433	0.15	234 .55	1	20 33		1610 .433	0.15	234.5 50398
1 9	2034		1903. 162	40.8	0.13	252.79 4969	1 9	20 34		1861 .056	0.13	242 .01	1	20 34		1861 .056	0.13	242.0 10986
2 0	2035		2199. 341	46.0 8	0.12	260.70 8498	2 0	20 35		2150 .683	0.12	249 .71	2 0	20 35		2150 .683	0.12	249.7 0888
2 1	2036	56.5 7	2541. 614	52.0 1	0.10	274.73 7309	2 1	20 36	25.65	2485 .383	0.10	260 .31	2 1	20 36	25.65	2485 .383	0.10	260.3 10884
					Total	4249.8 6					Total	396 7.1					Total	3995. 8014

$Table 14. Life Cycle Cost\ Comparison of Bituminous and Concrete Overlays$